skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Srinivas, C. V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study evaluated the effects of water stress on rice yield over Punjab and Haryana across North India by integrating Weather Research Forecasting (WRF) and Decision Support System for Agrotechnology Transfer (DSSAT) models. Indian Remote Sensing Satellite datasets were used to define land use/land cover in WRF. The accuracy of simulated rainfall and temperature over Punjab and Haryana was evaluated against Tropical Rainfall Measuring Mission and automated weather station data of Indian Space Research Organization, respectively. Data from WRF was used as weather input to DSSAT to simulate rice yield in Punjab and Haryana for 2009 and 2014. After simulated yield has been evaluated against district-level observed yield, the water balance components within the DSSAT model were used to analyze the impact of water stress on rice yield. The correlation (R 2 ) between the crop water stress factor and the rice yield anomaly at the vegetative and reproductive stage was 0.64 and 0.52 for Haryana and 0.73 and 0.68 for Punjab, respectively. Severe water stress during the flowering to maturity stage inflicted devastating effects on yield. The study concludes that the regional climate simulations can be potentially used for early water stress prediction and its impact on rice yield. 
    more » « less